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Highly Efficient
Stereospecific Preparation
of Tn and TF Building Blocks
Using Thioglycosyl Donors
and the Ph2SO/Tf2O
Promotor System

David Cato, Therese Buskas, and Geert-Jan Boons

Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA

The activation of 2-azido-2-deoxy Tn and TF thioglycosyl donors by the powerful
thiophilic promoter system Ph2SO/Tf2O has been investigated. Glycosylation of an
Fmoc-protected threonine derivative gave 1,2-cis glycosides in high yields and excellent
stereoselectivities. The galactosylation of phenyl 2-azido-4,6-O-benzylidene-2-deoxy-1-
thio-b-D-galactopyranoside was achieved in high yield and without orthoester formation
using a trichloroacetimidate donor carrying a 2-O-(2,5-difluorobenzoyl) group.
The anomeric thiophenyl group of the constructed TF disaccharide could directly be
activated by the van Boom promotor for the glycosylation of a threonine derivative.

Keywords Glycosylation, Thioglycoside, Tn antigen, TF antigen, Glycopeptide

INTRODUCTION

Mucins are a family of highly glycosylated proteins that are expressed on most
epithelial cells.[1] The polypeptide backbone of mucins consists of highly
conserved tandem repeats that are heavily O-glycosylated through clustered
serine and threonine residues. The large and complex mucin-type carbohydrate
structures serve as important recognition motifs for interactions with proteins.
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Although the glycoforms of mucins display extreme heterogeneity in regards to
saccharide composition, length, and linkages, the biosynthesis of mucins is
initiated by the addition of N-acetylgalactosamine to serine and threonine
residues. Further elongation of this structure leads to the large family of
O-glycans, classified into eight groups depending on their core stucture. This
elongation takes place at the 3-O and/or 6-O-position by addition of galactose
and/or polylactosamine residues followed by chain terminations with sialic
acids, fucoses, or sulfation.

In malignant cells, altered expression levels of glycosyl transferases such
as the downregulation of glucosaminyltransferases and concomitant up-regu-
lation of sialyltransferases lead to simpler truncated forms of the glycans.
This aberrant glycosylation has been correlated with specific disease states.
For example, it is known that the presence of the Tn antigen and the related
structure Galpb(1-3)GalpNaca-Ser/Thr, also known as the TF antigen (Fig. 1),
is common on human epithelial tumor cells,[2] such as colon and prostate
cancers.[3] The presence of these antigens has spurred intense studies aimed
at the development of immunotherapy for cancer.[4,5] However, the enormous
structural diversity that is introduced by glycosylation renders the isolation of
well-defined glycopeptides from natural sources an almost impossible task,
thus presenting a major obstacle to the study of the structure-activity relation-
ship of these compounds. It is thus not surprising that homogeneous synthetic
glycopeptides would be most valuable tools for unraveling the specific roles of
glycopeptides derived from mucins in biological processes.[6]

Our goal is to develop synthetic carbohydrate-based anticancer vaccines
and to construct complex glycosulfopeptides derived from mucins. With this
goal in mind, we needed a facile route to substantial quantities of Tn and TF
building blocks that could be used for Fmoc solid phase synthesis. To this
end, the formation of the a-glycosidic linkage between N-acetylgalactosamine
and serine or threonine is a key step. This particular glycosylation has
garnered much attention and has been extensively reviewed in the liter-
ature.[7–9] Here we report the use of the van Boom/van der Marel promotor

Figure 1: Tn and TF.
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system for the activation of thioglycosides in the synthesis of Tn and TF deriva-
tives useful for solid phase glycopeptide synthesis.

RESULTS AND DISCUSSION

Despite recent advances, the chemical synthesis of glycopeptides remains a
difficult task.[10,11] A crucial step in any glycopeptide synthesis is the incor-
poration of the saccharide part to the peptide backbone. Currently, the most
general synthetic methodology employs preformed glycosylated amino acids
for the stepwise solid-phase synthesis of peptides. The protecting groups for
these glycosylated amino acids must be carefully chosen and are rather
limited, as the O-glycosidic bond is acid labile and the O-linked glycopeptide
can undergo b-elimination upon treatment with strong bases. Presently, the
use of acetyl esters as hydroxyl protection for the oligosaccharide part and
Na-Fmoc-protected amino acids is a standard technique in solid-phase
glycopeptide synthesis. The formation of the a-glycosidic linkage between
N-acetylgalactosamine and serine or threonine is a key step in the preparation
of suitable glycosylated amino acid derivatives. For the installment of the
1,2-cis linkage, the nonparticipating 2-azido-2-deoxy group is commonly
employed to mask the amino function. Recent reports have shown that
2-acetamido-2-deoxy galactose derivatives carrying a 4,6-benzylidene give
a-selectivity in the preparation of Tn,[12] TF,[13] and sialyl-TF[14] building
blocks. Anomeric halides[4,15–18] and trichloroacetimidates[19,20] are the
most commonly used glycosyl donors to prepare the GalpNAca-Ser/Thr
linkage.[8,9] A typical example of this glycosylation is the activation of fully
acetylated 2-azido-2-deoxy bromides by AgClO4/Ag2CO3 in the presence of
serine or threonine derivatives (Sch. 1).[21] The reported yields and stereoselec-
tivities are highly dependent on the protecting group patterns of both the
saccharide donor and amino acid acceptor. Anomeric fluorides have also been
utilized for the preparation of Tn derivatives with Cp2ZrCl2/AgClO4 as promo-
ters.[4,20,22] Although high yielding in glycosylations of both serine and threo-
nine derivatives, the observed stereoselectivity was markedly decreased for
the Na-Fmoc-Ser-OBn derivative.[20]

The resulting poor stereoselectivities from the use of various TF disacchar-
ide donors[4,23–25] for the glycosylation of serine and threonine derivatives led

Scheme 1: (i): AgClO4/Ag2CO3, DCM/toluene, 48 hr, 64%.
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Danishefsky and coworkers to implement the “cassette method.”[4] This
method involves the use of a properly protected Tn derivative as a general
acceptor in the synthesis of practically any O-linked glycopeptide.

Most reported methods depend on conventional labile donors that must be
prepared just prior to glycosylation, thus clearly diminishing synthetic flexi-
bility. More stable donors such as the n-pentenyl-[26] and seleno-glycosides[27]

are capable of withstanding protecting group manipulations and may be
directly activated for glycosidations, but have not found widespread use for
the synthesis of Tn and TF building blocks.[28 –32]

A new generation of thioglycosyl promoters has recently been introduced
by Crich and coworkers.[33,34] In the most successful promoter system,
1-benzenesulfinylpiperidine (BSP) was reacted with triflic anhydride (Tf2O)
to form a sulfonium species, which could convert disarmed thioglycosides
into reactive triflates at very low temperatures.[34] However, it was found
that the BSP/Tf2O promoter pair was unable to successfully activate the
disarmed phenylthioglycosides of 2-azido-2-deoxy-mannose and 2-azido-2-
deoxy-glucose. Thus, building upon the foundation of the Crich discovery,
this promoter system was further refined by van Boom and van der
Marel.[35,36] Reacting diphenylsulfoxide (Ph2SO) with Tf2O led to a highly elec-
trophilic species capable of activating highly unreactive donors. This potent
promoter resulted in high yields and excellent stereoselectivities. By exploiting
differences in reactivity, it was shown to be useful in chemoselective glycosyla-
tion sequences with the BSP/Tf2O promoter system. In light of this discovery,
we wished to explore the use of thioglycosides as donors in the formation of the
a-glycosidic linkage between 2-azido-2-deoxy derivatives of the Tn and TF
saccharides.

To streamline the synthesis of Tn and TF derivatives, we wanted to explore
the use of the Ph2SO/Tf2O promoter system for the direct activation of 2-azido-
2-deoxy thiogalactoside donors in glycosylations with threonine derivatives. In
an attempt to accomplish this, bromide 5[37] was converted into the corres-
ponding thiophenyl derivative by reaction with sodium thiophenolate in a
mixture of dichloromethane and ethanol (Sch. 2).[38] Activation of thiophenyl
glycoside 8[39] with the Ph2SO/Tf2O promoter system for the glycosylation of
Na-Fmoc-Thr(OH)-OBn (6) proceeded with high efficiency and produced the
glycosyl amino acid 7 in an excellent yield of 85%. The reaction proceeded

Scheme 2: (i): NaS Ph, EtOH/DCM, 3 hr, %; (ii): 6, Ph2SO/Tf2O, DCM, 2 608C, 1 hr, 85%.

D. Cato, T. Buskas, and G.-J. Boons506

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
6
:
5
6
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



with complete stereochemical control as the a-anomer was formed exclusively.
Compared to similar glycosylations using MeOTf,[28] DMTST,[28,29] or NBS/

TBAOTf,[30–32] the Ph2SO/Tf2O promoter provides far superior yield and
stereoselectivity. Encouraged by this result, we directed our attention to the
preparation of the TF antigen. By deacetylation and the introduction of a
4,6-benzylidene, thioglycoside 8 was easily converted into the known
acceptor 10.[39] For the galactosylation, several glycosyl donors were investi-
gated. The results are summarized in Table 1. The commonly used donor
per-O-acetylated galactosyl bromide 11 activated by AgOTf[40] (entry 1) gave
in our experiments unreliable results. Disaccharide 12 was often accompanied
by a formation of substantial amounts of the corresponding orthoester.
Changing the promoter system or anomeric leaving group did not improve
the outcome (entries 2–4).

The fact that the Ph2SO/Tf2O promoter system uses nearly stoichiometric
quantities of activator and the thioglycoside is converted into the correspond-
ing triflate before the glycosyl acceptor is added to the reaction mixture,[35]

prompted us to explore the possibility of using the readily available thiogal-
actoside 14. Activation of 14 by Ph2SO/Tf2O in the presence of 2,5-di-tbutyl-
4-methylpyridine (DTBMP) and subsequent reaction with acceptor 10 (entry
5) gave mainly the corresponding orthoester. We were encouraged to find
only trace amounts of the disaccharide corresponding to the activation and
self-coupling of acceptor 10. In an attempt to avoid the orthoester formation,
a similar reaction was performed with the omission of the base. Unfortunately,
this reaction gave the same disappointing result (entry 6).

Replacing a 2-O-acetyl by a 2-O-benzoyl is a common way to avoid orthoe-
ster formation. Indeed, using fully benzoylated bromide 15 in an AgOTf-
activated glycosylation of acceptor 10 gave disaccharide 16 in 76% yield
(entry 7). However, due to the more severe basic conditions required for the
removal of O-benzoates and in particular a 2-O-benzoate of galactose, this
derivative would not be suitable for use in glycopeptide synthesis. Instead,
we turned our attention to the 2,5-di-fluorobenzoyl group (dFBz) that was
recently introduced for glycopeptide synthesis by Kihlberg and coworkers.[41]

An advantage of this protecting group is that the difluorobenzoyl possesses a
combination of the positive qualities associated with 2-O-benzoyl groups in gly-
cosylations and the ease of removal of acetyl esters. Using the easily accessible
fully difluorobenzoylated galactosyl bromide 17[41] in an AgOTf-mediated
reaction, the desired disaccharide 18 was obtained, but only in 51% yield
(entry 8). The donor was found to be very unreactive and the reaction
sluggish. An attempt to improve the reaction by gentle heating was unsuccess-
ful. A positive feature of this donor was that no orthoester was isolated. The
mediocre yield prompted us to prepare glycosyl donors 21 and 23 (Sch. 3).
Carrying a C-2 dFBz and acetyl esters at the C-3, C-4, and C-6 position, it
was believed that these donors would exhibit a higher reactivity. To accomplish
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Table 1.

Entry Donor R1 R2 R3 Promotor/solvent/temp. Product

1 11 a-Br Ac Ac AgOTf/DCM/–408C-RT Orthoester/12
2 11 a-Br Ac Ac HgO/HgCl2/DCM/508C Orthoester/12
3 13 a/b-OC(NH)CCl3 Ac Ac TMSOT f/DCM/–208C-RT Orthoester/12
4 14 b-SEt Ac Ac NIS/TMSOTf/DCM/–208C-RT Orthoester/12
5 14 b-SEt Ac Ac Ph2SO/Tf2O/DTBMP/DCM/–608C-RT Orthoester
6 14 b-SEt Ac Ac Ph2SO/Tf2O/DCM/–608C-RT Orthoester
7 15 a-Br Bz Bz AgOTf/DCM/–408C-RT 16 (76%)
8 17 a-Br dFBz dFBz AgOTf/DCM/–408C-RT 18 (51%)
9 21 a-Br dFBz Ac AgOTf/DCM/–408C-RT 25 (63%)

10 23 a/b-OC(NH)CCl3 dFBz Ac TMSOTf/DCM/–208C-RT 25 (74%)
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this goal, alcohol 19[42] was acylated with difluorobenzoyl chloride in the
presence of 4-dimethylaminopyridine (DMAP), which afforded C-2 dFBz
derivative 20 in 96% yield. Conversion of 20 into glycosyl donor 21 was
achieved by treatment with 30% hydrogen bromide in acetic acid at 508C. Selec-
tive cleavage of the anomeric acetate of 20 gave hemiacetal 22, which was
transformed into trichloroacetimidate 23 using standard conditions.[43]

AgOTf activation of bromide 21 at –408C in the presence of glycosyl acceptor
10 provided disaccharide 25 in 63% yield (entry 9). The superior reactivity of
bromide 21 as compared to that of fully difluorobenzoylated bromide 17 was
reflected by a slightly increased yield. The condensation of trichloroacetimidate
23 activated by TMSOTf at –208C and alcohol 10 furnished disaccharide 25 in
a further improved yield of 74%.

Having established a reliable and efficient route to the thiophenyl TF
disaccharide, we chose to evaluate this glycosyl donor with construction of
the a-O-linkage to threonine in mind. As depicted in Scheme 4, thioglycoside
25 was activated by Ph2SO/Tf2O in the presence of DTBMP at 2608C for the
glycosylation of threonine derivative 6. Remarkably, the reaction yielded exclu-
sively the a-anomer product 26 in an excellent yield of 82%. It should be noted
that these results are not only the best results reported for the TF disaccharide
thioglycosides, but also the selectivity of this reaction is more superior than
what is observed in most procedures using halides and trichloroacetimidates
as glycosyl donors. To illustrate this feature, thiophenyl 25 was converted
into the corresponding bromide 27 by treatment with molecular bromine.
Subsequently, activation of the bromide with AgClO4 in a glycosidation with
threonine acceptor 6 gave 26 in an acceptable overall yield, but as expected,
the a/b-selectivity was lowered and isolation of 26 required careful
chromatography.

Scheme 3: (i): dF BzCl, DMAP, pyridine, 18 hr, 96%; (ii): 30% HBr/HOAc, Ac2O, 508C, 89%;
(iii): NH2NH2-HOAc, DMF, 608C, 3 hr, 92%; (iv): Trichloroacetonitrile, DBU, DCM, 0oC, 96%.
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In conclusion, we have described an efficient route for Tn and TF antigen
building blocks that are useful in the solid-phase synthesis of glycopeptides
derived from mucins. Using the promotor system introduced by van Boom
and van der Marel for the activation of disarmed thioglycosides, we found
that the activation of Tn and TF thioglycoside donors proceeded smoothly
and provided the a-O-glycosidic bond to Na-Fmoc-Thr benzyl ester in high
yields and with exclusive formation of the a-product. Additionally, the TF
derivative may serve as an intermediate for further extension in the synthesis
of other mucin-derived glycopeptides.

EXPERIMENTAL

General
NIS was purchased from Fluka and recrystallized from dioxane/CCl4. All

other chemicals were purchased from Aldrich, Acros, and Fluka and used
without further purification. Molecular sieves were activated at 1458C for
10 hr. All solvents employed were of reagent grade and dried by refluxing
over appropriate drying agents. TLC was performed using Kieselgel 60 F254

(Merck) plates, with detection by UV light (254 nm) and/or by charring with
8% sulfuric acid in ethanol. Column chromatography was performed on silica
gel (Merck, mesh 70–230). Extracts were concentrated under reduced
pressure at � 408C (water bath). 1H NMR and 13C NMR spectra were
recorded on a Varian Inova300 spectrometer and a Varian Inova500

Scheme 4: (i): 6, Ph2SO/Tf2O, DCM, 2608C, 1 hr, 82%; (ii): Br2, DCM, 08C; (iii): 6, AgClO4, DCM,
rt, 48 hr, 68% yield over two steps.
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spectrometer equipped with Sun workstations. 1H spectra recorded in CDCl3
were referenced to residue CHCl3 at 7.26 ppm or TMS, and 13C spectra to the
central peak of CDCl3 at 77.0 ppm. Assignments were made using standard
1D and gCOSY, gHSQC, and TOCSY 2D experiments. Positive ion matrix-
assisted laser desorption ionization time of flight (MALDI-TOF) mass spectra
were recorded using an HP-MALDI instrument using gentisic acid as a matrix.

N-(9-Fluorenylmethyloxycarbonyl)-O-(3,4,6-tri-O-acetyl-2-azido-2-

deoxy-a-D-galactopyranosyl)-L-threonine benzylester (7). To a solution
of compound 8 (43 mg, 101mmol) and Ph2SO (58 mg, 284mmol) in dry CH2Cl2
(5 mL) was added, at 2608C, trifluoromethanesulfonic anhydride (24mL,
141mmol). The reaction mixture was stirred for 10 min, after which a
solution of acceptor 6 (87 mg, 202mmol) in CH2Cl2 (1 mL) was added. The
mixture was stirred at 2608C for 1 hr after which it was slowly warmed to rt
and quenched by the addition of saturated aqueous NaHCO3 (3 mL). The
organic phase was washed with brine, dried (MgSO4), and concentrated.
Purification of the residue by silica gel chromatography (hexane/EtOAc 3 : 1)
yielded 7 (64 mg, 86.0mmol, 85%); TLC (hexane/EtOAc 2 : 1) Rf ¼ 0.39; NMR
data was in agreement with reported data. HR MALDI-TOF MS: m/z: Calc
for C38H40N4O12: 744.2643; found 767.2541 [MþNa]þ.

1,3,4,6-Tetra-O-acetyl-2-O-(2,5-difluorobenzoyl)-a-D-galactopyranose

(20). To a solution of 1,3,4,6-tetra-O-acetyl-a-D-galactopyranose (700 mg,
2.01 mmol) in dry pyridine (8 mL) was added 4-(dimethylamino)pyridine
(49 mg, 0.402 mmol) and the solution was stirred at rt for 30 min. 2,5-Difluoro-
benzoyl chloride (0.5 mL, 4.02 mmol) was added dropwise over a 10-min period
and the stirring was continued for 18 hr. The reaction was quenched by
addition of methanol (4 mL) and after stirring for 1 hr, the solution was
diluted with CH2Cl2 (120 mL) and washed with water (150 mL). The aqueous
phase was extracted with CH2Cl2 (50 mL) and the combined organic phases
were dried (MgSO4) and evaporated to dryness. After purification by silica
gel chromatography (hexane/EtOAc 8 : 1), 20 (942 mg, 1.93 mmol, 96%) was
afforded as a white solid; TLC (hexane/EtOAc 1 : 1), Rf ¼ 0.68; [a]Dþ 20.0
(c 2 mg/mL, CHCl3); NMR data (CDCl3): 1H, d 7.55–7.05 (m, 3H, dFBz), 6.53
(d, 1H, J1,2 3.3 Hz, H-1), 5.60–5.41 (m, 3H, H-2, H-3, H-4), 4.39 (t, 1H, J5,6

6.6 Hz, H-5), 4.16–4.07 (m, 2H, H-6), 2.18, 2.14, 2.04, 2.03 (s, 12H,
4 � CH3CO); 13C, d 20.7, 20.8, 20.9, 21.0 (4 � CH3CO), 61.4 (C-6), 67.6 (C-5),
67.7 (C-3), 68.0 (C-4), 69.1 (C-2), 89.7 (C-1), 118.3–122.2 (aromatic C), 170.6,
170.3, 170.2, 170.1 (4 � CH3CO); HR MALDI-TOF MS: m/z: Calc for
C21H22F2O11: 488.1130; found 511.1029 [MþNa]þ.

3,4,6-Tri-O-acetyl-2-O-(2,5-difluorobenzoyl)-a-D-galactopyranosyl
bromide (21). Compound 20 (300 mg, 614mmol) was dissolved in a mixture
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of acetic acid (3 mL) and acetic anhydride (2 mL). Thirty-three percent
hydrogen bromide in acetic acid (4 mL) was added and the mixture was
stirred at 508C for 6 hr. The solution was allowed to cool to rt, diluted with
CH2Cl2 (100 mL), and washed with water (125 mL) and saturated aqueous
NaHCO3 (125 mL). The organic phase was dried (MgSO4) and concentrated.
Purification of the residue by silica gel chromatography (hexane/EtOAc 3 : 1)
furnished 21 (278 mg, 545mmol, 89%); TLC (hexane/EtOAc 2 : 1), Rf ¼ 0.51;
[a]Dþ 31.4 (c 2.0 mg/mL, CHCl3); NMR data (CDCl3): 1H, d 7.61–7.08
(m, 3H, dFBz), 6.80 (d, 1H, J1,2 3.8 Hz, H-1), 5.60–5.55 (m, 2H, H-3, H-4),
5.30 (dd, 1H, J1,2 2.2 Hz, J2,3 9.6 Hz, H-2), 4.54 (t, 1H, J5,6 6.6 Hz, H-5), 4.25–
4.09 (m, 2H, H-6), 2.17, 2.06, 1.98 (s, 9H, 3 � CH3CO); 13C, d 20.7, 20.8, 20.9,
(3 � CH3CO), 61.0 (C-6), 67.3 (C-5), 68.2 (C-2), 69.0 (C-4), 71.5 (C-3), 87.8
(C-1), 118.4–122.7 (aromatic C), 170.6, 170.1, 169.9 (3 � CH3CO); HR
MALDI-TOF MS: m/z: Calc for C19H19BrF2O9: 508.0181; found 531.0079
[MþNa]þ.

3,4,6-Tri-O-acetyl-2-O-(2,5-difluorobenzoyl)-D-galactopyranose (22).

Hydrazine acetate (192 mg, 2.08 mmol) was added to a solution of 20 (925 mg,
1.89 mmol) in DMF (9 mL) heated at 608C. The mixture was kept at 608C for
3 hr, allowed to return to rt, diluted with EtOAc (75 mL), and washed with
20% aqueous NaCl (75 mL). The aqueous phase was extracted with EtOAc
(40 mL) and the combined organic layers were dried (MgSO4) and concentrated
under reduced pressure. Silica gel chromatography purification (hexane/

EtOAc 2 : 1) gave 22 (776 mg, 1.74 mmol, 92%); TLC (hexane/EtOAc 2 : 1),
Rf ¼ 0.22; [a]Dþ 7.4 (c 2.0 mg/mL, CHCl3); NMR data (CDCl3): 1H, d 7.60–
7.10 (m, 3H, dFBz), 5.68 (d, 1H, J1,2 3.6 Hz, H-1), 5.59 (dd, 1H, J2,3 10.5 Hz,
J3,4 3.0 Hz, H-3), 5.52 (d, 1H, J4,5 2.5 Hz, H-4), 5.36 (dd, 1H, J1,2 10.7 Hz, J2,3

3.6 Hz, H-2), 4.52 (t, 1H, J5,6 6.6 Hz, H-5), 4.20–4.10 (m, 2H, H-6), 3.10 (bs,
1H, OH), 2.18, 2.17, 2.06 (s, 9H, 3 � CH3CO); 13C, d 20.8, 20.9, 21.0
(3 � CH3CO), 62.0 (C-6), 66.7 (C-5), 68.5 (C-3), 69.9 (C-4), 71.5 (C-2), 90.8
(C-1), 118.2–122.2 (aromatic C), 170.2, 170.4, 170.7 (3 � CH3CO); HR
MALDI-TOF MS: m/z: Calc for C19H20F2O10: 446.1025; found 469.0920
[MþNa]þ.

3,4,6-Tri-O-acetyl-2-O-(2,5-difluorobenzoyl)-a-D-galactopyranosyl

trichloroacetimidate (23). Compound 22 (250 mg, 560mmol) was dissolved
in dry CH2Cl2 (5 mL) at 08C, and trichloroacetonitrile (1.2 mL, 8.40 mmol) was
added followed by 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU, 8mL, 53.5mmol).
The mixture was stirred for 2 hr at 08C, concentrated to dryness, and
purified by silica gel chromatography (hexane/EtOAc/TEA 5 : 1 : 0.01) to
yield 23 (317 mg, 538mmol, 96%); TLC (hexane/EtOAc 2 : 1), Rf ¼ 0.39;
[a]Dþ 26.25 (c 2.0 mg/mL, CHCl3); NMR data (CDCl3): 1H, d 7.57–7.06
(m, 3H, dFBz), 6.74 (d, 1H, J1,2 2.2 Hz, H-1), 5.55–5.70 (m, 3H, H-2, H-3,
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H-4) 4.51 (t, 1H, J5,6 6.6 Hz, H-5), 4.24–4.08 (m, 2H, H-6), 2.20, 2.03, 1.99
(s, 9H, 3 � CH3CO); 13C, d 20.8, 20.9, 21.0 (3 � CH3CO), 61.5 (C-6), 67.7
(C-3), 67.8 (C-4), 68.2 (C-2), 69.4 (C-5), 93.6 (C-1), 118.2–122.5 (aromatic C),
161.0 (C ¼ NH) 170.1, 170.3, 170.5 (3 � CH3CO); HR MALDI-TOF MS: m/z:
Calc for C21H20Cl3F2NO10: 589.0121; found 612.0019 [MþNa]þ.

Phenyl 2-Azido-4,6-O-benzylidene-2-deoxy-3-O-(3,4,6-tri-O-acetyl-2-
O-(2,5-difluorobenzoyl)-b-D-galactopyranosyl)-1-thio-b-D-galactopyra-

noside (25). Trimethylsilyl trifluoromethane sulfonate (7mL, 38.7mmol) was
added, at 2208C and under argon, to a stirred mixture of 10 (35 mg, 91.1mmol),
23 (75 mg, 128mmol), and 4Å molecular sieves in CH2Cl2 (5 mL). The reaction
was allowed to slowly return to rt and was quenched with triethylamine.
The reaction was diluted with CH2Cl2 (50 mL), filtered through Celite, and
evaporated to dryness. The residue was purified by silica gel chromatography
(hexane/EtOAc 2 : 1) to furnish 25 (55 mg, 67.4mmol, 74%); TLC (hexane/

EtOAc 1 : 1) Rf ¼ 0.65; [a]Dþ 10.6 (c 2 mg/mL, CHCl3); NMR data (CDCl3):
1H, d 7.70–7.05 (m, 13H, dFBz, 2Ph), 5.51 (s, 1H, PhCH), 5.48 (t, 1H, J1,2

10.1 Hz, H-20), 5.42 (d, 1H, J3,4,5 3.0 Hz, H-40), 5.15 (dd, 1H, J2,3 10.4 Hz, J3,4

3.3 Hz, H-30), 4.91 (d, 1H, J1,2 8.0 Hz, H-10), 4.42–4.34 (m, 2H, H-50, H-1),
4.26 (d, 1H, J3,4,5 2.5 Hz, H-4), 4.17–3.94 (m, 4H, H-5, H-6, 2H-60), 3.73
(t, 1H, J1,2,3 9.9 Hz, H-2), 3.54 (dd, 1H, J2,3 10.2 Hz, J3,4 3.0 Hz, H-3), 3.46
(m, 1H, H-6), 2.14, 2.05, 1.93 (s, 9H, 3 � CH3CO); 13C, d 20.7, 20.9, 21.0
(3 � CH3CO), 60.0 (C-2), 61.7 (C-6), 67.2 (C-40), 70.0 (C-20), 70.1 (C-50) 71.2
(C-30), 74.9 (C-4), 81.1 (C-3), 86.0 (C-1), 101.0 (PhCH), 102.3 (C-10), 126.6–
137.9 (aromatic C), 170.3, 170.4, 170.5 (3 � CH3CO); HR MALDI-TOF MS:
m/z: Calc for C38H37F2N3O13S: 813.2015; found 836.1913 [MþNa]þ.

N-(9-Fluorenylmethyloxycarbonyl)-O-[2-Azido-4,6-O-benzylidene-

2-deoxy-3-O-(3,4,6-tri-O-acetyl-2-O-(2,5-difluorobenzoyl)-b-D-galacto-
pyranosyl)-a-D-galactopyranosyl]-L-threonine Benzylester (26). To a
solution of compound 25 (64 mg, 79mmol), Ph2SO (45 mg, 221mmol), and 2,5-
di-tert-butyl-3-methylpyridine (49 mg, 235mmol) in dry CH2Cl2 (4 mL) was
added trifluoromethanesulfonic anhydride (19mL, 112mmol) at 2608C. The
mixture was stirred for 10 min, after which a solution of acceptor 6 (68 mg,
158mmol) in CH2Cl2 (1.5 mL) was added. The reaction was stirred at 2608C
for 1 hr and then it was slowly warmed to rt and quenched by the addition of
saturated aqueous NaHCO3 (2 mL). The organic phase was washed with
brine, dried (MgSO4), and concentrated. Purification by silica gel chromato-
graphy (hexane/EtOAc 3 : 1) gave 26 (74 mg, 65mmol, 82%); TLC (hexane/

EtOAc 1 : 1) Rf ¼ 0.67; [a]Dþ 21.0 (c 2 mg/mL, CHCl3); NMR data (CDCl3):
1H, d 7.60–6.97 (m, 21H, dFBz, Ph, Bn, Fmoc), 5.71 (d, 1H, J 9.3 Hz, NH),
5.54 (t, 1H, J1,2,3 9.8 Hz, H-20), 5.45 (d, 1H, J4,5 2.5 Hz H-40), 5.18 (dd, 1H, J2,3

10.3 Hz, J3,4 2.9 Hz, H-30), 5.13 (s, 1H, PhCH), 4.93 (d, 1H, J1,2 7.8 Hz H-10),
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4.89 (d, 1H, J1,2 2.9 Hz, H-1), 4.50–4.13 (m, 10 H, Fmoc 3H, Ha, Hb, H-4, H-5,
H-6ax, H-60), 4.02–3.97 (m, 2H, H-3, H-50), 3.73 (dd, 1H, J1,2 2.9 Hz, J2,3 10.3 Hz,
H-2), 3.63 (m, 1H, H-6eq), 2.18, 2.03, 1.93 (s, 9H, 3 � CH3CO), 1.27 (d, 3H, CH3);
13C, d 19.2 (CH3), 20.8, 20.9, 21.0 (3 � CH3CO), 59.3 (Ca), 59.8 (C-2), 63.6 (C-6),
69.2-66.2 (C-40, CH2-Fmoc), 70.1 (C-20), 71.3 (C-50, C-30), 75.8 (C-3), 75.6 (C-4),
76.3 (Cb), 99.2 (C-1), 101.0 (CHPh), 102.4 (C-10), 117.9–130.2 (aromatic C),
169.2–171.1 (5 � C ¼ O); HR MALDI-TOF MS: m/z: Calc for
C58H56F2N4O18: 1134.3558; found 1157.3450 [MþNa]þ.
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